翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

semisimple algebra : ウィキペディア英語版
semisimple algebra

In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras.
==Definition==
The Jacobson radical of an algebra over a field is the ideal consisting of all elements that annihilate every simple left-module. The radical contains all nilpotent ideals, and if the algebra is finite-dimensional, the radical itself is a nilpotent ideal. A finite-dimensional algebra is then said to be ''semisimple'' if its radical contains only the zero element.
An algebra ''A'' is called ''simple'' if it has no proper ideals and ''A''2 = ≠ . As the terminology suggests, simple algebras are semisimple. The only possible ideals of a simple algebra ''A'' are ''A'' and . Thus if ''A'' is not nilpotent, then ''A'' is semisimple. Because ''A''2 is an ideal of ''A'' and ''A'' is simple, ''A''2 = ''A''. By induction, ''An'' = ''A'' for every positive integer ''n'', i.e. ''A'' is not nilpotent.
Any self-adjoint subalgebra ''A'' of ''n'' × ''n'' matrices with complex entries is semisimple. Let Rad(''A'') be the radical of ''A''. Suppose a matrix ''M'' is in Rad(''A''). Then ''M
*M'' lies in some nilpotent ideals of ''A'', therefore (''M
*M'')''k'' = 0 for some positive integer ''k''. By positive-semidefiniteness of ''M
*M'', this implies ''M
*M'' = 0. So ''M x'' is the zero vector for all ''x'', i.e. ''M'' = 0.
If is a finite collection of simple algebras, then their Cartesian product ∏ ''Ai'' is semisimple. If (''ai'') is an element of Rad(''A'') and ''e''1 is the multiplicative identity in ''A''1 (all simple algebras possess a multiplicative identity), then (''a''1, ''a''2, ...) · (''e''1, 0, ...) = (''a''1, 0..., 0) lies in some nilpotent ideal of ∏ ''Ai''. This implies, for all ''b'' in ''A''1, ''a''1''b'' is nilpotent in ''A''1, i.e. ''a''1 ∈ Rad(''A''1). So ''a''1 = 0. Similarly, ''ai'' = 0 for all other ''i''.
It is less apparent from the definition that the converse of the above is also true, that is, any finite-dimensional semisimple algebra is isomorphic to a Cartesian product of a finite number of simple algebras. The following is a semisimple algebra that appears not to be of this form. Let ''A'' be an algebra with Rad(''A'') ≠ ''A''. The quotient algebra ''B'' = ''A'' ⁄ Rad(''A'') is semisimple: If ''J'' is a nonzero nilpotent ideal in ''B'', then its preimage under the natural projection map is a nilpotent ideal in ''A'' which is strictly larger than Rad(''A''), a contradiction.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「semisimple algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.